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Steady finite motions of a conducting Iiquid 

By ROBERT R. LONG 
School of Engineering, The Johns Hopkins University, Baltimore 

(Received 28 April 1959) 

I n  certain cases of steady motion of a conducting fluid in a magnetic field, the 
primitive equations may be integrated once, yielding a second-order partial 
differential equation in the stream function. This equation is highly non-linear in 
general, but for certain choices of basic flow and magnetic fields it is tractable. 
Several arbitrary functions of integration have to be evaluated to make the 
analysis useful. This may be done in a region that remains undisturbed. A short 
discussion is given to suggest a procedure for deciding in a special case whether 
this undisturbed region is ‘upstream ’ or ‘downstream ’. 

1. Introduction 
This paper was suggested by previous work of the author on the mechanics of 

rotating fluids (Long 1953a) and fluids with density stratification (Long 1953b). 
Among other things these papers showed how the primitive equations of motion 
can be integrated in certain cases to yield a partial differential equation in a single 
dependent variable analogous to the harmonic equation of potential flow. The 
procedure used to do this also works in cases of conducting fluids in magnetic 
fields. We will show this in some detail for the axisymmetric case in the following 
section. The extension to the plane case is similar and will not be discussed 
here. 

2. Axisymmetric flow 
Consider the steady flow of a frictionless, incompressible, conducting fluid of 

infinite conductivity. If, as is usual, we neglect displacement currents we have the 
equations (Cowling 1957) 

v . v  = 0, 

V.h = 0, 

V x (V x h) = 0, 

where v is the fluid velocity vector, p is fluid pressure, p is the uniform 
density, q = IvI is the speed and x is the potential of other body forces. We 
have written h = H,/(p/477p), where H is the magnetic field and p is the 
permeability. 
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We adopt the co-ordinate system of figure 1 and the following additional 

(1) There is axial symmetry, i.e. all scalars are independent of 6’. In  particular, 
assumptions: 

if the velocity and magnetic fields are 

the 

v = u i + v j + w k ,  
h = f i + g j + h k ,  

components depend only on r and z .  

x 
FIGURE 1. Co-ordinate system. 

(2) The velocity and magnetic fields are assumed known either a t  z + - co or 
at z -+ + 00. The components u andf of these ‘undisturbed fields’ are assumed to 
be zero and, for simplicity, the remaining components depend ,only on distance 
from the axis. The question of whether an undisturbed region exists, and if so 
whether it is ‘upstream’ or ‘downstream’ will be discussed only with reference to 
a special case in the next section. 

Equations (2) and (3) can be integrated by introducing two scalar functions 
$(r,  z )  and R(r, z), such that 

u r =  -$ z, = $-r, 17) 

f r =  - A  t, hr = 4. (8) 

(9) 

The three equations in (4) are 
a 
az 
- (uh - wf) = 0, 

a 
ar 
- (uhr - wfr) = 0, 

a a - (vf-ug)+-((vh-wg) = 0. 
ar aZ 
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Equations (9) and (10) have solution r(uh-wf) = const. The constant is zero, 
however, since u and f are zero in the undisturbed region. Introducing (8) into 

(12) 

uh-wf = 0, we find 

where the material derivative is 

d A  
at 
-- - 0, 

Equation (12) may also be written 

-@2&+11.,Az = 0, 
which has the integral A = A(@). 

Thus, A is constant on the material surfaces @ = const. Since the latter are stream 
surfaces, this expresses the well-known principle that magnetic lines move with 
the fluid in the ideal case of this paper. 

Equation (1 1) may also be integrated. With use of (7) and (8) it takes the form 

or 

if we uae (15) and write A' = dh /d$ .  Equation (16) is 

so that 

where K ( @ )  is an arbitrary function. 

p/p + 8 q 2  + x is independent of 8, this equation is 
Another conserved quantity can be found from the j-equation in (1). Since 

u vr+-  +...1,-f g r + -  -hg, = 0. 3 9 
The same procedure that led to (1 7) permits us to integrate this equation. We get 

vr - A'gr = L($). (19) 

The final conservation equation is found by cross-differentiating the remaining 
two equations in (1) to eliminate p / p  + +a2 + x. This vorticity equation is 

or 
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Equations (17) and (19) give us 

(vr)2 - (gr)2 = A - Br4, 

where A and B are functions of @: 

L2 K2 A = - - -  1 -A123 = - 1 -A'2' 
Using (22)) we get 

A 'u 
[(vr)2 - ( ~ r ) ~ ]  = --Blur 

l a  --- 
r4 aZ r3 

dr d A' B'r2 
dt dt (2r2 2 ) '  (24) B ' r - = - -  -+- A' dr 

r3 dt 
= --- 

and combining (21) and (24), we get 

us - wr - A'( f, - h,) A' B'r2 
- +-+- = M ( @ ) .  r 2r2 2 

Introducing the stream function @, we now get 

(26) 

This is a non-linear differential equation in $. The functions A(@), L(@), K(@) ,  
M ( @ )  are assumed known ( A  and B may then be obtained from (23)). 

According to our previous assumptions the velocity and magnetic fields in the 
undisturbed region may be written 

where the components are functions of ro(r, z) ,  the distance of the stream surface 
passing through (r ,  8, z )  from the axis of symmetry in the undisturbed region. The 
relation between $ and the Lagrangian variable ro is obtained by integrating 

or 

We may now evaluate all unknown functions of @ in terms of the known functions 
of ro in (27) and (28). From (8) we get 

A = J:horodro, 
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Equations (17), (19) and (25) show that 

iM = 1 aw, -----((1-A’2)-A’A’’w;+-2+-. A’ B’r; 
ro dro 2r, 2 

These functions and A’, B’ become known functions of $ if we eliminate r, by 
using (30). 

It is not the purpose of this note to develop applications of the equation (26), 
but we may point out certain cases in which the equation is tractable: 

(1) If the undisturbed conditions are wo = 0, w, = const., go = 0, h, = const., 
we have the well-known result that the flow is irrotational; thus 

1 
$zz+$rr-,$r = 0. (36) 

The magnetic field then does not affect the motion. 

have 
(2) In  the case wo = Qr, (solid rotation), w, = const., go = 0, h, = const., we 

0 ,  A = $h,r;, 9 = i w , ~ ; ,  K = --, h0 Q L = Qrz 
wn 

so that 

Equation (26) is 

or, in terms of the perturbed streamfunction $‘ (i.e. $ = $worz + $ I ) ,  it takes the 
neater form 

(38) 
1 $LZ i- +; - , $; i- c2$’  = 0. 

This is the same as the equation derived by the author for the non-conducting 
case (h, = 0). Solutions of interest may be found in ways similar to those in two 
papers of Long (1 955, 1956). 

(3) A number of other cases in which equation (26) is linear can be found by 
a procedure similar to that in a recent paper (Long 1958). This approach will not 
be developed here. 

3. The undisturbed region 
If we could have included dissipation in our discussion, we could be sure that 

the magnetic and flow fields would be undisturbed at  sufficient distances from the 
source of the disturbance. Without dissipation, however, we will frequently have 
a situation in which steady perturbations can exist at indefinitely great distances 
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from the source of the disturbance. In  subcritical flow of water over an obstacle in 
a channel, for example, the free surface downstream to infinity is in steady wave 
motion (Lamb 1932). At sufficiently great distances upstream there is no dis- 
turbance. The steady-state theory is incomplete in such cases since the mathe- 
matical problem is indeterminate. 

Stoker (1953) has shown that in the water-wave case the disappearance of 
upstream waves occurs even without dissipation if the flow problem is solved 
from the initial state of rest. On the other hand, Rayleigh (see Lamb 1932) found 
that indeterminacy of this kind can be removed by introducing a small amount 
of friction in an artificial way. As the coeffcient of friction tends to zero the 
solution tends to that obtained by the approach of Stoker or by arbitrarily 
superimposing solutions to wipe out upstream waves. The author has verified 
that Rayleigh’s approach is effective in a case similar to the one in this paper 
(Long 1955). 

We can obtain definite results in the model mentioned in the last section, 
i.e. a stream of liquid moving at a uniform speed wo parallel to the axis, rotating 
with constant angular velocity SZ, and under a uniform axial magnetic field h,. 
If the disturbance is not too large we may suppose that the problem of the 
undisturbed region may be decided on the basis of linear theory, namely that 
upstream or downstream conditions will be undisturbed if no energy from the 
source of disturbance (in the vicinity of z = 0) can reach the steady waves which 
may exist. In  the linear case the energy propagation will be at the speed of the 
group velocity. On the other hand, for large disturbances we recognize that effects 
that change the basic velocity and magnetic fields may propagate indefinitely in 
the direction of the assumed undisturbed region. The problem as originally posed 
would then be overdetermined mathematically. This occurs in the case mentioned 
above of water flow over an obstacle. If the flow is slow and the obstacle large, 
a ‘blocking’ wave propagates upstream, raising the water level and making it 
impossible to assume that upstream is undisturbed. 

The blocking problem is discussed at length in Long (1955) and will not be 
examined here. The case of small or moderate axisymmetric disturbances leads 
to a simple and interesting conclusion. If we perturb the basic flow and magnetic 
fields slightly, we will obtain a spectrum of waves moving in the upstream and 
downstream directions. If we confine the system to a circular tube of arbitrary 
radius b, the waves will move at speeds given by (Long 1956) 

471.2 

[cr2 - ( z i / b 2 ) ]  ’ 
= (39) 

where h is wavelength, z, are the zeros of the Bessel function J,(z) and cr2 is now 

The wave-speed or phase velocity is c. These are infinitesimal waves and may be 
superimposed. The group velocity cg is 

c - c  A 2 d C 2  L = 
c c2 dh2’ 

8 Fluid Mech. 7 
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Solving (39) the phase velocity is 

Using (41), we obtain 

L- - +  
C r$ +$) J( 1 + g + $)). 

Comparing this with (41) i t  is seen that waves with speeds c2 < hg have a group 
velocity greater than the phase velocity, while those with speeds c2 > h: have 
a lower group velocity. In the steady-state problem, if w, > h,, waves of the 
second kind can remain at rest against the current, and these will be found 
downstream. The undisturbed region will be upstream. However, if w, < h,, the 
standing waves will be upstream and the undisturbed region will be downstream. 

We see from (41) that there is both a maximum and minimum wave-speed. If 
the oncoming stream has a speed outside of these limits, no wave can exist and we 
would expect the disturbed motion to die out at z = -I co. As the current 
approaches infinity or zero, (37) shows that the motion approaches potential flow. 
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